Removing N-Terminal Sequences in Pre-S1 Domain Enhanced Antibody and B-Cell Responses by an HBV Large Surface Antigen DNA Vaccine

نویسندگان

  • Guohong Ge
  • Shixia Wang
  • Yaping Han
  • Chunhua Zhang
  • Shan Lu
  • Zuhu Huang
چکیده

Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Priming Hepatitis B Surface (HBsAg)- and Core Antigen (HBcAg)-Specific Immune Responses by Chimeric, HBcAg with a HBsAg ‘a’ Determinant

We developed an immunogen to stimulate multivalent immunity against hepatitis B surface antigen (HBsAg) and hepatitis B core antigens (HBcAg). Immune responses specific for both HBsAg and HBcAg play an important role in controlling the infection. HBsAg-specific antibodies mediate elimination of virions at an early stage of infection and prevent the spread of virus. The immunogen was constructed...

متن کامل

Expression of S and pre s2 Hepatitis B Surface Antigens in Mammalian Cos-7 Cell Line

Hepatitis B virus (HBV) is a serious global health problem. The development of a safe and effective vaccinewould help infection prevention. Previous hepatitis B vaccine production involved the isolation of the noninfectious particle from chronic HBV carriers. DNA recombinant technology has been used for vaccineproduction without having been contaminated with blood-born infectious ag...

متن کامل

The factors influencing the immune response to hepatitis B vaccine and persistence of the protection.

 Hepatitis B virus (HBV) infection and its sequelae which include cirrhosis and hepatocellular carcinoma is a major public health problem throught the world.The WHO strategy for effective control of HBV infection is vaccination with the surface antigen of virus(HBsAg).The results obtained from a large number of studies demonstrated that the vaccine induces a protective antibody resonse (anti-HB...

متن کامل

DNA Immunization with Fusion of CTLA-4 to Hepatitis B Virus (HBV) Core Protein Enhanced Th2 Type Responses and Cleared HBV with an Accelerated Kinetic

BACKGROUND Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4) primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/T...

متن کامل

Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle.

The three envelope proteins of the hepatitis B virus (HBV) are encoded by a single open reading frame in the genome containing three separate in-phase AUG codons. This organization defines three protein domains (pre-S1, pre-S2, S) which form the small (S), middle (M, pre-S2/S), and large (L, pre-S1 /pre-S2/S) proteins. Mature virions are generated by the budding of preformed nucleocapsids throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012